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Abstract—The reaction of functionalized azomethine ylides as C-unsubstituted nitrile ylide equivalents with acetylenic dipolaro-
philes is mentioned. Therein, the initially formed cycloadducts, 2,5-dihydropyrroles, by the reaction of the azomethine ylides with
substituted acetylenes, undergo a fission reaction to afford 2H-pyrroles and the parent heterocyclic system. Some 2H-pyrroles iso-
merized to 1H-pyrroles under both thermal and acidic conditions.
� 2006 Published by Elsevier Ltd.
The cycloaddition reaction of N-unsubstituted (NH)
azomethine ylides with olefinic dipolarophiles has been
a very attractive approach to the N-unsubstituted
(NH) pyrrolidines, which are found widely in biologi-
cally and pharmacologically active compounds.1 Typical
methods for the generation of NH-azomethine ylides
constitute of group rearrangement of a-metalloamides2

and 1,2-prototropic3 and N-metalation4 routes of the
imines of a-amino esters. The former two routes are
uncatalyzed thermal processes, however those have not
always accomplished the stereoselective cycloaddition
of the resulting NH-azomethine ylides because of the
harsh generation conditions. In a recent paper,5 we
reported that the NH-azomethine ylide A, which was
generated by the 1,2-prototropic isomerization of the
corresponding imine under extremely mild conditions
underwent a cycloaddition reaction with N-phenylmalei-
mide (NPMI) to give a cycloadduct, proline derivative
B, stereoselectively. More interestingly, the treatment
of the cycloadduct B with acetic acid caused a fission
reaction to afford dehydroproline derivative C and the
parent heterocyclic system D in good yields, the former
of which corresponds to the cycloadduct of C-unsubsti-
tuted nitrile ylide with NPMI. We, therefore, thought
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that we could propose an equivalent process to
C-unsubstituted nitrile ylide cycloaddition reaction
(Scheme 1).

Our next concern was directed toward the reaction of
the functionalized NH-azomethine ylides with acetylenic
dipolarophiles, because only few approaches to the gen-
eral and effective preparation of 2H-pyrroles6 had been
reported compared with 1H-pyrroles. When the solution
of aldehyde 1 with (DLDL)-phenylalanine methyl ester 2a
(1.5 equiv) in toluene was heated at 85 �C for 1 h
and cooled to room temperature, dimethyl acetylenedi-
carboxylate (DMAD) was added to the reaction mixture
and the mixture was allowed to stir at room temperature
for 14 h. After the purification with silica gel column
chromatography, the desired 2,5-dihydropyrrole 4a
(53%), Michael type adducts 5a (44% as an E/Z mix-
ture), 4-hydroxy-1H-pyrrole 6 (11%) and parent hetero-
cycle 7 (9%) were obtained. Undesired products 5a and 6
were formed from only the reaction of DMAD with
amino ester 2a.7 The reaction of 1, 2a, and dibenzoyl-
acetylene (DBZA) afforded the almost same results:
2,5-dihydropyrrole 8a (36%), 9a (47%; as an E/Z mix-
ture), and 7 (6%) were formed. Single crystal X-ray
structure analysis8 for 4a and 8a showed that these were
the cycloadducts of DMAD and DBZA to the (E,E)-
azomethine ylide (E,E)-3a, respectively. Although the
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Scheme 1. Functionalized azomethine ylide A as C-unsubstituted nitrile ylide equivalent.
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reaction conditions including solvent, temperature,
reagent molar ratio, addition sequences and dehydrating
reagent were examined, the yield of the cycloadducts
4a and 8a could not be improved. Gentle heating of 4a
and 8a in toluene gave the desired 2H-pyrroles 10a9

and 11a in moderate to good yields together with 7.
These mean that the reaction sequences are a novel
and facile synthetic method for functionalized 2H-pyr-
roles in mild conditions (Scheme 2). Probably DMAD
and DBZA are too reactive toward the amine nucleo-
phile 2a leading to 5a and 9a to accomplish efficiently
the imine formation between aldehydes 1 and 2. So,
we chose methyl propiolate (MP) as the next acetylenic
dipolarophile with less reactivity. The solution of 1 and
2a in toluene was heated at 85 �C for 1 h, cooled down
to room temperature, and MP was added to the solu-
tion. The reaction mixture was stirred at 15 �C for 3 d.
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The reaction underwent smoothly and regioselectively
to give cycloadduct 12a (79%), 1H-pyrrole 13a (9%)
and the parent heterocycle 7 (9%) with a depression of
the formation of Michael type adduct such as 5a and
9a. The structure of cycloadduct 12a was also confirmed
by its single crystal X-ray analysis,8 while that of
1H-pyrrole 13a was determined by the comparison of
the spectroscopic data reported in the literature.10 Heat-
ing the isolated 12a in toluene at 85 �C for 12 h gave 1H-
pyrrole 13a (78%) together with 7 (92%) and a small
amount of unidentified product. Standing the chloro-
form-d solution of 12a at room temperature for 12 days
gave a mixture of 2H-pyrrole 14a11 and 7. The 2H-pyr-
role 14a was not so stable and converted gradually to
1H-pyrrole 13a together with a small amount of an
unidentified product on further standing (for 50 days)
at the same temperature (Scheme 3).
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So, we applied the one-pot procedure to this reaction;
the reaction of 1, 2a, and MP in toluene gave 13a and
7 in 71% and 86% yield, respectively (Table 1; entry
1).12 Stimulated by these findings, the similar reaction
of 1, amino esters 2b–f and MP was examined. Although
pyridinium p-toluene sulfonate (PPTS) was required for
completing the reaction in many cases, the desired 1H-
pyrroles 13b–f and 7 were formed in moderate to good
yields. These results are summarized in Table 1.

In order to obtain further information on the reaction
path from 12 to 13, the similar one-pot reaction of 1,
ethyl propiolate (EP) and 2a, 2b, and 2e was also exam-
ined to give 1H-pyrrole 15a, 15b, and 15e in good to
Table 1. The reaction of functionalized azomethine ylides 3 with MP and E

1

H2N CO2Me

R 2

HC C Z

addit

1)

toluene, 85 °C , 1 h

2) MP or EP

85 °C , reaction time

3)

(1.5-1.8 equiv.)

(1.3-1.5 equiv.)

Entry Amino ester/R Propiolate/Z Additive
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2 PPTS (1.
3 Ph (2b) CO2Me PPTS (0.
4 Me (2c) CO2Me None
5 PPTS (0.
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9 PPTS (0.

10 (CH2)2SMe (2f) CO2Me None
11 PPTS (0.
12 Bn (2a) CO2Et None
13 Ph (2b) CO2Et PPTS (0.
14 i-Bu (2e) CO2Et PPTS (0.
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Scheme 5. The reaction of functionalized azomethine ylide 3a with EPP and
excellent yields as single isomers together with 7 (Table
1; entries 12–14). Fortunately, recrystallization of 15a
from benzene afforded good single crystals for the
X-ray structure analysis8 and the structure of 15a was
confirmed to be 4-ethyl 3-methyl 2-benzylpyrrole-3,4-
dicarboxylate. Although details are still unclear, a plau-
sible pathway from 12 to 13 is demonstrated in Scheme
4; the elimination of the parent heterocycle 7 from cyclo-
adduct 12 takes place thermally to afford 2H-pyrroles
14, which undergo a 1,5-ester group rearrangement
accompanied with the aromatization to 1H-pyrrole 13.15

Our final concern in this one-pot reaction was focused
on the generality of acetylenic dipolarophiles; the reac-
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tion of 1, 2a, and ethyl phenylpropiolate (EPP) gave an
almost 2:1 mixture of two regioisomeric 2H-pyrroles 17a
and 18a. Interestingly, the reaction of 1, 2a, and phenyl-
acetylene (PA) gave the desired 1H-pyrrole 19a in a
moderate yield. Diphenylacetylene (DPA) did not afford
any adducts as expected (Scheme 5).

In conclusion, we have reported an effective and versa-
tile preparation method for functionalized 2H- and
1H-pyrroles, in which the cycloaddition reaction of
functionalized azomethine ylides as C-unsubstituted
nitrile ylide equivalents with acetylenic dipolarophiles
leading to cycloadducts, 2,5-dihydropyrroles, is a key
step. The resulting 2,5-dihydropyrroles undergo a fission
reaction to give 2H-pyrroles and the parent heterocyclic
system. The 2H-pyrroles unsubstituted at the 3-position
undergo a facile isomerization to 1H-pyrroles. The one-
pot procedure for functionalized 1H-pyrroles is also
accomplished. Further investigation on this chemistry
is now underway in our laboratory.
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